Uni

Software

arallel

ve rse

TRANSFORM
your'@ode

Intel® ﬁgau el Studio XE 2015 Launches

Designing For Scalability

.

Softvvar'e: ,

‘Rl

J P B o

) @ i
TRANSFORM YOUR CODE "+ "
Intel® Parallel Studio XE 2015 BS09 4. 4. o :
Deliver top application performance and reliability. -, iy

o Composer Edition: Includes industry-leading compilers and libraries that are optimized for creating fast parallel code.

» Professional Edition: Everything in Composer Edition, plus the best-in-class analysis tool Intel® VTune™ Amplifier XE,
advanced memory and thread error checking and tuning capability.

 Cluster Edition: Everything in Professional Edition, plus an MPI cluster communications library, along with MPI error
checking and tuning.

Explore our full range of development tools—from technical and embedded to media,
HTMLS5, and cross-platform.

Software Software Software Intel® Software
Intel® Intel® Intel® Integrated Native
Parallel Studio XE System Studio DK Media Server Studio Developer Experience

(Intel® INDE) ‘

al Computing,

Try the Software:

intel.com/software/products

For more information regarding performance and optimization choices in Intel® software products, visit http://software.intel.com/en-us/articles/optimization-notice.

© 2014, Intel Corporation. All rights reserved. Intel and the Intel logo are trademarks of Intel Corporation in the U.S. and/or other countries. *Other names and brands may be
claimed as the property of others.

http://software.intel.com/en-us/articles/optimization-notice
http://intel.com/software/products

CONTENTS

Letter from the Editor 4
Software-as-a-Key

By James Reinders

Optimization Reports: Increase Performance with Intel® Compilers 5

Compiler optimization reports available in Intel® Parallel Studio XE 2015 can be used to tune
code and increase performance. This article covers the types of report data available and how
to apply this insight to your applications.

How to Design for Scalable Performance—from Multicore to Many-core 16

Intel® Advisor XE 2015 creates a framework for software architects to model their design and
predict performance scaling and synchronization issues. Here we see how Intel Advisor XE 2015
extends modeling capabilities to support Intel® Xeon Phi™ coprocessors.

Additional Intel® Advanced Vector Extensions 512 (Intel® AVX-512) 23

A concise look at new instructions that enrich the operations available with Intel AVX-512.
These include a group of byte and word (8- and 16-bit) operations known as Byte and Word
Instructions, which enhance integer operations. An additional orthogonal capability, known
as Vector Length Extensions, enables most AVX-512 instructions to operate on 128 or 256 bits.

Digimarc Takes Embedded Digital Watermarking to the Next Level 26

A case study reveals how Digimarc optimized code and used vectorization to upgrade its SDKs.
The results include meeting aggressive performance and time-to-market goals, while continuing
to make its mark in digital watermark innovation.

High Performance Parallelism Pearls 31

The latest book compiled by parallel programming evangelists and expert Intel engineers James
Reinders and Jim Jeffers distills the experience of 69 experts into a 28-chapter “cookbook” on
the inventive ways to get the most from Intel® multicore and many-core processors.

© 2014, Intel Corporation. All rights reserved. Intel, the Intel logo, Cilk, VTune, Xeon, and Xeon Phi
are trademarks of Intel Corporation in the U.S. and/or other countries. *Other names and brands may

be claimed as the property of others. Slgn up for future issues = Share with a friend

Open CL and the OpenCL logo are trademarks of Apple, Inc. used by permission by Kronos.

https://swdevtoolsmag.makebettercode.com/?utm_source=Parallel%20Universe%20Magazine%20Issue%2019&utm_content=PUM_Footer_na&utm_campaign=Intel%20DPD%20Campaign
http://intel.ly/Wh3TS3
http://intel.ly/SXMKY3

< The Parallel Universe

LETTER FROM THE EDITOR

James Reinders, Director of Parallel Programming Evangelism at Intel Corporation, is coauthor
of an exciting new book, Multithreading for Visual Effects (20714). His other book credits include
Intel® Xeon Phi™ I r High Performance Programming (2013), Structured Parallel
Programming (2012), [° Threadi ilding Blocks: Qutfitting C++ for Multicore Pri
Parallelism, and VTune™ Performance Analyzer Essentials (Intel Press, 2005).

Software-as-a-Key

It's no secret that the full capability and capacity of today’s hardware is not being tapped. Using
software to unlock hardware features is the stealth advantage of many of today's most innovative
application developers—from game designers to big data analysts.

Intel has bundled its latest feature releases into three editions of Intel® Parallel Studio XE
2015, targeted to developer requirements. In this issue, we explore a few of those features to
demonstrate the impact of getting faster code to market faster.

Our feature article, Optimization Reports: Increase Performance with Intel® Compilers, brings a new
level of insight to tuning and performance enhancements. It looks at the depth and types of report
data now available and techniques for applying this information to your development process.

How to Design for Scalable Performance—from Multicore to Many-core tackles scalability on the
Intel® Xeon Phi™ coprocessor. It includes coverage of analysis tools that automatically predict
whether Intel Xeon Phi coprocessor performance levels can exceed the Intel Xeon processor
performance peaks for a given workload.

In Additional Intel® Advanced Vector Extensions 572 (Intel® AVX-512), | provide a brief overview
of new instructions supported by the Intel Xeon Phi coprocessor and future Intel® Xeon®
processors. The new capabilities and support, as well as the value for compiler vectorization,
are worth considering.

Next, we share an industry case study which shows the impact of “hardware plus software”
optimization in the field.

Digimarc Takes Embedded Digital Watermarking to the Next Level shows how Intel® software
tools allowed Digimarc to upgrade its SDKs to meet aggressive performance and time-to-market
goals, while continuing to make its mark in digital watermark innovation.

In short, there are new tools to try and new opportunities to capitalize on. We hope you'll find the
key to your own coding challenges right here.

James Reinders
September 2014

For more information regarding performance and optimization choices in Intel® software products,

visit software.intel [articles/opti ion-notice. Slgn Up fOF future ISSUGS Share Wlth a frlend

http://software.intel.com/en-us/articles/optimization-notice
http://lotsofcores.com
http://parallelbook.com/
http://parallelbook.com/
http://threadingbuildingblocks.org/
http://threadingbuildingblocks.org/
http://intel.ly/Wh3TS3
http://intel.ly/SXMKY3
https://swdevtoolsmag.makebettercode.com/?utm_source=Parallel%20Universe%20Magazine%20Issue%2019&utm_content=PUM_Footer_na&utm_campaign=Intel%20DPD%20Campaign

< The Parallel Universe 5

N

Optimization Reports: Increase
Performance with Intel” Compilers

By Martyn Corden, Technical Consulting Engineer, Developer Products Division, Intel

Even when you are compiling an application for optimization, you can get enhanced performance
improvement by utilizing optimization reports. Fortunately, this has become much easier with the
latest compilers from Intel.

Modern optimizing compilers can transform code in ways that greatly improve performance, but the
results may depend on how the original code was written and how much information is available

to the compiler. The Intel® compiler optimization report tells the programmer which optimizations
were performed and why others were not performed. This feedback can be used to tune code,
enabling additional compiler optimizations and further enhancing application performance.

Prior Intel compiler versions provided potentially valuable information scattered through a series
of different reports. But those messages were not logically ordered and were sometimes cryptic
or confusing, especially in the presence of inlining or multiple, compiler-generated loop versions.
Some of the information was not actionable or immediately useful. The single report stream
could be hard to navigate, hard for other tools to access, and was unsuited to the parallel builds
that are increasingly used to reduce build times on modern, multicore processors.

For more information regarding performance and optimization choices in Intel® software products,

visit software.intel.com/en-us/articles/optimization-notice. S'gn up for future issues = Share with a friend

http://software.intel.com/en-us/articles/optimization-notice
https://swdevtoolsmag.makebettercode.com/?utm_source=Parallel%20Universe%20Magazine%20Issue%2019&utm_content=PUM_Footer_na&utm_campaign=Intel%20DPD%20Campaign

< The Parallel Universe 6

With the new 15.0 compiler version in Intel® Parallel Studio XE 2015, the optimization report
has been comprehensively redesigned to integrate all individual reports into a single,
user-friendly report and to address the limitations described above. Here, we'll cover new
optimization report features, and how to use them to understand what optimizations the
compiler did or did not perform, and to guide further application tuning.

Enabling and Controlling the Report

The command line switches for enabling the optimization report and high-level control are listed
in Figure 1 for the Intel compilers for Windows*, Linux* and OS X*. In most cases, the version of a
switch for Linux or OS X starts with -q and the corresponding version for Windows starts with /Q.
The switches are the same for C/C++ and Fortran compilers.

Linux* and OS X* Windows* Functionality
-gopt-report[=N] /Qopt-report[:N] Enables the report; N=1-5 specifies an
increasing level of detail (default N=2)

-gopt-report-file=stdout /Qopt-report-file: stdout Controls where the report is written

| stderr | filename | stderr | filename (default is to file with extension .optrpt)
/Qopt-report-format:vs Report is formatted to enable display in

Microsoft Visual Studio*

-gopt-report-routine= /Qopt-report-routine: Emit report only for functions whose name

fnl[,fn2,..] fnl[,fn2,..] contains fn1 [or fn2...] as a substring

-gopt-report-filter= /Qopt-report-filter= Emit report only for lines In1 - In2 of file

“filename, 1nl-1n2" “filename, 1lnl-1n2" filename

-gopt-report- /Qopt-report- Optimization information is provided only

phase=phasel[,phase2,..] phase:phasel[,phase2,..] for the specified optimization phases

1a

Optimization Phase Description

vec Automatic and explicit vectorization using SIMD instructions

par Automatic parallelization by the compiler

loop Memory, cache usage, and other loop optimizations

openmp Explicit threading using OpenMP directives

ipo Inter-procedural optimization, including inlining

pgo Profile guided optimization (using runtime feedback)

cg Optimizations during code generation

offload Offload and data transfer to Intel® Xeon Phi™ coprocessors

all Reports on all optimization phases (default)

1b

ey 100 e swrsoss - Sign up for future issues Share with a friend

http://software.intel.com/en-us/articles/optimization-notice
http://intel.ly/Wh3TS3
https://swdevtoolsmag.makebettercode.com/?utm_source=Parallel%20Universe%20Magazine%20Issue%2019&utm_content=PUM_Footer_na&utm_campaign=Intel%20DPD%20Campaign

< The Parallel Universe 7

Report Output

The report is disabled by default and may be enabled by the switch —qopt-report. By default,
for compatibility with parallel builds, a separate report corresponding to each object file is created
with file extension .optrpt in the same directory as the object file. The report output may be
redirected to a different, named file, or to stderr or stdout, using the switch —gopt-report-file.

For debug builds with =g on Linux or OS X, /z1i on Windows, some loop optimization information
is embedded in the assembly code and in the object file. This makes the loop structure in the
assembly code easier to understand, and makes optimization information from the compiler
available for use by other software tools.

Optimization reports can sometimes be very large. They may be restricted to functions of interest
using the switch —gopt-report-routine, or to a particular range of line numbers within a
source file using the switch —gopt-report-filter.

Layout of Loop-Related Reports

Messages relating to the optimization of nested loops are displayed in a hierarchical manner,

as illustrated in Figure 2. The compiler generates a “LOOP BEGIN” message for each loop

in the compiler-generated code, along with the initial source line and column number, and a
corresponding “LOOP END” message. Indenting is used to make clear the nesting structure. There
may be multiple compiler-generated loops for a single source loop and the nesting structure may
differ from that of the source code. A loop may be “distributed” (split) into two or more sub-loops.
The partial report displayed in Figure 2 shows that the outer loop at line 6 of the source code has
become two inner loops in the optimized generated code.

1 double a[1000][1000],b[1000][1000],c [1000][1000]; headerinfo source location
2
3 void foo() { LOOP BEGIN at ..\mydir\dev\test.c(7,5)
4 int i,7,k; Distributed chunk2
5 .. Loopnestinterchanged: (12 3)— (23 1)
6 for(i=0; 1<1000; i++) { LOOP BEGIN at .\mydir\dev\test.c(9,7)
7 for(j=0; j< 1000; j++) { Distributed chunk?2
8 c[jl[i] = 0.0;
9 for(k=0; k<1000; k++) { LOOP BEGIN at ...\mydir\dev\test.c(6,3)
10 c[Jj1[i] = c[J1[i]1 + a[kl[i]* b[]J1[k];
1 } LOOP END
LOOP BEGIN at ...\mydir\dev\test.c(6,3)
- ¥ ... REMAINDER LOOP WAS VECTORIZED
B loop nestin LOOFEND
14 } g LOOP END

LOOP END

2

For more information regarding performance and optimization choices in Intel® software products,

visit software.intel.com/en-us/articles/optimization-notice. S'gn up for future issues = Share with a friend

http://software.intel.com/en-us/articles/optimization-notice
https://swdevtoolsmag.makebettercode.com/?utm_source=Parallel%20Universe%20Magazine%20Issue%2019&utm_content=PUM_Footer_na&utm_campaign=Intel%20DPD%20Campaign

< The Parallel Universe 8

This hierarchical display allows compiler optimizations to be associated directly with the
particular loop in the generated code to which they apply.

SIMD load instructions in a vectorized loop are most efficient when the data to be loaded are
aligned to a memory address that is a multiple of the SIMD register width. To achieve this, the
compiler may “peel” off a few initial iterations, so that the vectorized kernel can operate on data
that are better aligned. Any small number of leftover iterations after the vectorized kernel may be
optimized as a separate “remainder” loop. Figure 3 shows how such peel and remainder loops
are identified in the optimization report.

LOOP BEGIN at ggF.cc(124,5) inlined into ggF.cc(56,7)
remark #15018: loop was not vectorized: not inner loop
LOOP BEGIN at ggF.cc(138,5) inlined into ggF.cc(60,15)
Peeled

remark #25460: Loop was not optimized
LOOP END
LOOP BEGIN at ggF.cc(138,5) inlined into ggF.cc(60,15)
remark #15145: vectorization support: unroll factor set to 4
remark #15002: LOOP WAS VECTORIZED
LOOP END
LOOP BEGIN at ggF.cc(138,5) inlined into ggF.cc(60,15)
Remainder
remark #15003: REMAINDER LOOP WAS VECTORIZED
LOOP END
LOOP END

Vectorized with
Peeling and
Remainder

Using the Loop and Vectorization Reports

The goal of the new optimization report is not just to help you understand what the compiler did,
but to help you understand the obstacles that it encountered, so you can help it perform better.
We will illustrate this with the simple C example in Figure 4 (the report and its interpretation are
very similar for both C++ and Fortran). The function foo () loops over the input array theta,
does a calculation involving a math function, and returns the result in the array sth.

For more information regarding performance and optimization choices in Intel® software products,

visit software.intel.com/en-us/articles/optimization-notice. Slgn up for future issues Share with a friend

http://software.intel.com/en-us/articles/optimization-notice
https://swdevtoolsmag.makebettercode.com/?utm_source=Parallel%20Universe%20Magazine%20Issue%2019&utm_content=PUM_Footer_na&utm_campaign=Intel%20DPD%20Campaign
http://intel.ly/SXMKY3

< The Parallel Universe 9

#include <math.h>
void foo (float * theta, float * sth) ({
int i;
for (i = 0; i < 128; i++)
sth[i] = sin(theta[i]+3.1415927);

$ icc -c -gopt-report=2 -gopt-report-phase=loop,vec -qgopt-report-file=stderr foo.c
Begin optimization report for: foo(float *, float *)
Report from: Loop nest & Vector optimizations [loop, vec]

LOOP BEGIN at foo.c(4,3)

<Multiversioned v1>
remark #25228: Loop multiversioned for Data Dependence
remark #15399: vectorization support: unroll factor set to 2
remark #15300: LOOP WAS VECTORIZED

LOOP END

LOOP BEGIN at foo.c(4,3)
<Multiversioned v2>

remark #15304: loop was not vectorized: non-vectorizable loop instance
from multiversioning

LOOP END

4

The report shows that the compiler generated two loop versions corresponding to a single loop
in the source code (this is known as multiversioning), and explains that this is because of data
dependence. The compiler does not know at compile time whether the pointer arguments theta
and sth might be aliased, i.e,, the data they point to might overlap in a way that would make
vectorization unsafe. Therefore, the compiler creates two versions of the loop, one vectorized

and one not. The compiler inserts a runtime test for data overlap so that the vectorized loop is
executed if it is safe to do so; otherwise, the non-vectorized loop version is executed.

If the programmer knows that the two pointer arguments are not aliased, he or she can
communicate that to the compiler, either using the command line option -fargument-noalias
(Linux or OS X) or /Qalias-args- (Windows), or the restrict keyword along with -restrict
(Linux or OS X) or /Qrestrict (Windows). Alternatively, the compiler can be told directly that it is
safe to vectorize the loop, using #pragma ivdep or #pragma omp simd (this latter requires
the -qopenmp or -qgopenmp-simd switch). In each of these cases, only the vectorized version

For more information regarding performance and optimization choices in Intel® software products,

visit software.intel.com/en-us/articles/optimization-notice. S'gn up for future issues = Share with a friend

http://software.intel.com/en-us/articles/optimization-notice
https://swdevtoolsmag.makebettercode.com/?utm_source=Parallel%20Universe%20Magazine%20Issue%2019&utm_content=PUM_Footer_na&utm_campaign=Intel%20DPD%20Campaign
http://intel.ly/SXMKY3

< The Parallel Universe

10

of the loop is generated, and the compiler does not need to generate any runtime tests for data
overlap. In our example, we use the command line switch and increase the level of detail in the
report as in Figure 5.

$ icc -c -fargument-noalias

-gopt-report-file=stderr foo.c

Begin optimization report for: foo(float *, float *)

Report from: Loop nest & Vector optimizations [loop, vec]

LOOP BEGIN at foo.c(4,3)

remark #15389:

[foo.c (5,

remark #15389:

foo.c(5,5)

remark #15381:
[foo.c(5,5)]
remark #15399:
remark #15417: vectorization support:

14) 1]

]

—-gopt-report=4 -qgopt-report-phase=loop,vec

vectorization support: reference theta has unaligned access

vectorization support: reference sth has unaligned access [

vectorization support: unaligned access used inside loop body

vectorization support: unroll factor set to 2

precision to double precision 1
[foo.c(5,14)

remark #15418: vectorization support:

precision to single precision 1
[foo.c(5,5)

remark
remark
remark
remark
remark
remark
remark
remark
remark
remark
remark
remark
remark
remark
LOOP END

For more information regarding performance and optimization choices in Intel® software products,
visit software.intel.com/en-us/articles/optimization-notice.

#15300:
#15450:
#15451:
#15475:
#15476:
#15477 :
#15478:
#15479:
#15480:
#15481:
#15482:
#15487 :
#15488:
#25015:

LOOP WAS VECTORIZED

unmasked unaligned unit stride loads: 1
unmasked unaligned unit stride stores: 1
—--— begin vector loop cost summary --—-
scalar loop cost: 114

vector loop cost: 40.750

estimated potential speedup: 2.790
lightweight vector operations: 9
medium-overhead vector operations: 1
heavy-overhead vector operations: 1
vectorized math library calls: 1

type converts: 2

--- end vector loop cost summary ---

Estimate of max trip count of loop=64

Sign up for future issues

number of FP up converts:

single

number of FP down converts: double

Share with a friend

http://software.intel.com/en-us/articles/optimization-notice
https://swdevtoolsmag.makebettercode.com/?utm_source=Parallel%20Universe%20Magazine%20Issue%2019&utm_content=PUM_Footer_na&utm_campaign=Intel%20DPD%20Campaign

< The Parallel Universe 11

The report shows that only a single loop version was generated. The cost summary shows that
the estimated speedup from vectorization is about 2.79. Not bad, but we can do better. We note
the remarks 15417 and 15418 about conversions between single- and double-precision at
columns 14 and 5 of line 5, and the presence of 2 type converts in the summary. Checking the
source code, we see that the array theta is single-precision, but the literal constant 3.1415927
defaults to double-precision. The result of the addition is double-precision. So, the double-
precision version of the sine function is called, only for the result to be converted back to single-
precision for storage into sth.

This impacts performance in two ways: it takes longer to calculate a sine function to higher
precision; and because a double takes twice the space of a float in the SIMD register, the vector
instructions can only operate on half as many elements at a time. If we modify the source code by
making the literal constant and/or the sine function explicitly single precision,

sth[i] = sinf(theta[i]+3.1415927f);

then the warnings about precision conversions go away, and the estimated speedup almost
doubles, to 5.4. This is because most of the time goes in the vectorized math library call (remark
#15482), and rather little in the more lightweight vector operations (remark #15479).

Next, we notice that the estimated maximum trip count of the vectorized loop is 64, (remark
#250715), compared to the original loop iteration count of 256. So each vector operation is acting
on 4 floats, that is, 16 bytes. This is because, by default, we are compiling for Intel® Streaming
SIMD Extensions, (Intel® SSE), for which the vector width is 16 bytes. If we have an Intel®
processor with support for Intel® Advanced Vector Instructions (Intel® AVX), which have a vector
width of 32 bytes, we can target these with the compiler option -xavx. This causes the following
changes in the report:

remark #15477: vector loop cost: 11.620
remark #15478: estimated potential speedup: 9.440

remark #25015: Estimate of max trip count of loop=32

If we had targeted an Intel® Xeon Phi™ coprocessor, the maximum trip count would have been 16
and the vector width would have been 16 floats or 64 bytes.

We now look at the messages relating to alignment. Accesses to memory that are aligned to a
32 byte boundary for Intel AVX (16 bytes for Intel SSE, 64 bytes for Intel Xeon Phi coprocessors)
are typically more efficient than memory accesses that are not so aligned. Remark #15387 is a
general warning that an unaligned memory access was detected somewhere within the loop.
Remarks #15389, 15450, and 15451 tell us that when the compiler generates loads of theta
and stores to sth it assumes that the data are unaligned. Since theta and sth are passed in

as arguments, the compiler does not know their alighnment. Data may be aligned where they are

For more information regarding performance and optimization choices in Intel® software products,

visit software.intel.com/en-us/articles/optimization-notice. Slgn up for future issues Share with a friend

http://software.intel.com/en-us/articles/optimization-notice
https://swdevtoolsmag.makebettercode.com/?utm_source=Parallel%20Universe%20Magazine%20Issue%2019&utm_content=PUM_Footer_na&utm_campaign=Intel%20DPD%20Campaign
http://intel.ly/SXMKY3

< The Parallel Universe 12

declared by using declspec(align(32)) (Windows)or attribute ((align(32)))
(Linux or OS X), or where they are allocated, for example, by using mm malloc() or Posix
memalign (). If the arguments to function foo () are known to be aligned, the keyword
__assume aligned() may be used to inform the compiler:

__assume_aligned(theta,32);

__assume_aligned(sth,32);

These keywords should only be used if you are sure that the pointer arguments of the function
will always point to aligned data. There is no runtime check. After recompiling with the
___assume aligned keyword, only aligned memory accesses are reported, for example:

remark #15388: vectorization support: reference theta has
aligned access

The estimated speedup due to vectorization increases by about 20%:

remark #15477: vector loop cost: 9.870
remark #15478: estimated potential speedup: 11.130

Now that sth is aligned, the compiler has the possibility of generating streaming stores (also
known as non-temporal stores) directly to memory. This may be worthwhile if the stored data are
unlikely to be accessed again in the near future, (i.e., before being evicted from cache). This avoids
a “read-for-ownership” of the cache line, which may be beneficial for applications that read and
write a lot of data and whose performance is limited by the available memory bandwidth. It also
frees up cache for more productive uses. The compiler finds it worthwhile to generate streaming
stores automatically only for amounts of data much larger than in this example, typically several
megabytes. If the iteration count is increased to 2000000, or if #pragma vector nontemporal
is placed before the loop, the compiler generates streaming store instructions and the following
additional messages appear in the optimization report:

remark #15467: unmasked aligned streaming stores: 1

remark #15412: vectorization support: streaming store was generated
for sth

Even for such a tiny function, the optimization report can be a rich source of information.

For more information regarding performance and optimization choices in Intel® software products,

visit software.intel.com/en-us/articles/optimization-notice. S'gn up for future issues = Share with a friend

http://software.intel.com/en-us/articles/optimization-notice
https://swdevtoolsmag.makebettercode.com/?utm_source=Parallel%20Universe%20Magazine%20Issue%2019&utm_content=PUM_Footer_na&utm_campaign=Intel%20DPD%20Campaign
http://intel.ly/SXMKY3

< The Parallel Universe

Example of the IPO Report on Inlining

13

The IPO report gives information about optimizations across function boundaries. Here, we will

focus on inlining.

3 static void bar (float a[N], float b[N]) {
// large body

11}

12

13 static void foo(float a[N], float b[N]) {
- // small body

21 bar(a, b);

22}

24 extern int main() {
26 float a[N];
27 float b[N];

35 foo(a, b);

36 foo(a, b);

37 printf(“result %d %d\n”,b[0], b[N-1]1]1);
38}

icc -qopt-report=3 -gopt-report-phase=ipo sm.c
INLINING OPTION VALUES:
-inline-factor: 100
INLINE REPORT: (main) [1l] sm.c(24,19)
—> INLINE: [35] foo()
-> [21] bar()
- > INLINE: [36] foo()
-> [21] bar()
- >EXTERN: [37] printf

INLINE REPORT: (bar) [2] sm.c(3,42)

DEAD STATIC FUNCTION: (foo) sm.c(13,42)

For more information regarding performance and optimization choices in Intel® software products,

visit software.intel.com/en-us/articles/optimization-notice. S|gn up for future issues

Share with a friend

http://software.intel.com/en-us/articles/optimization-notice
https://swdevtoolsmag.makebettercode.com/?utm_source=Parallel%20Universe%20Magazine%20Issue%2019&utm_content=PUM_Footer_na&utm_campaign=Intel%20DPD%20Campaign

< The Parallel Universe 14

Figure 6 shows schematically a main program that twice calls a small, static function foo (),

and then calls printf to print a final result. foo () calls a large static function bar (). Each live
function gets its own inlining report. Thus main (), whose body starts at line 24, column 19, gets
foo () inlined at line 35 and at line 36. foo () inturn gets bar () inlined atline 21.main () also
calls printf () atline 37; printf is marked as external, because its content is not visible to the
compiler. bar (), whose body starts at line 3, column 42, does not contain any function calls. The
static function foo (), whose body starts at line 13, column 42, is marked as dead because all of
the calls to it within the source file are inlined; since it can't be called externally, the compiler does
not need to generate a standalone version of the function.

Any indirect function calls would also be shown at report level 3, marked “INDIRECT.” At higher
levels, the sizes of all called functions visible to the compiler are displayed, along with the
increase in size of the calling function when they are inlined.

At the start of the inlining phase of the optimization report is a list of the inlining parameters'
values that were used, next to the compiler switches that can be used to modify them. These can
be used to control the amount of inlining, based on the information in the report. For example,
changing the argument of —inline-factor (/Qinline-factor on Windows) from 100 to
200 doubles all the size limits used to control what may be inlined. Inlining of individual functions
can be requested or inhibited using pragmas such as inline, noinline, and forceinline, or
by the corresponding function attributes using _attribute or declspec keywords. For
more details, see the Intel® Compiler User and Reference Guides.

Other Report Phases

-gopt-report-phase=par: Reports on automatic parallelization (threading) by the compiler,
structured similarly and integrated with the vectorization and loop reports.

-gopt-report-phase=openmp: Reports on threading constructs resulting from OpenMP*
pragmas or directives.

-gopt-report-phase=pgo: Reports on profile-guided optimization, including which functions
had useful profiles.

-gopt-report-phase=cg: Reports on optimizations during code generation, such as intrinsic
function lowering (conversion to lower level constructs).

—-gopt-report-phase=1loop: Reports on additional loop and memory optimizations, such as
cache blocking, prefetching, loop interchange, loop fusion, etc.

-gopt-report-phase=offload: Summarizes data scheduled for transfer to and from an Intel
Xeon Phi coprocessor.

For more information regarding performance and optimization choices in Intel® software products,

visit software.intel.com/en-us/articles/optimization-notice. Slgn up for future issues Share with a friend

http://software.intel.com/en-us/articles/optimization-notice
https://swdevtoolsmag.makebettercode.com/?utm_source=Parallel%20Universe%20Magazine%20Issue%2019&utm_content=PUM_Footer_na&utm_campaign=Intel%20DPD%20Campaign
http://intel.ly/SXMKY3

< The Parallel Universe 15

Summary

The new, consolidated optimization report in the Intel® C/C++ and Fortran compilers 15.0
provides a wealth of information in a readily accessible format. This includes reportage
on which optimizations could not be performed, as well as those that were performed.
These reports can provide valuable guidance on further tuning that could improve
application performance.

For more information, see the Intel® Parallel Studio XE 2015 Composer Edition Compiler User
Guide and Compiler Reference Guide.

*Other names and brands may be claimed as the property of others.

INFORMATION IN THIS DOCUMENT IS PROVIDED “AS IS”. NO LICENSE, EXPRESS OR IMPLIED, BY ESTOPPEL OR OTHERWISE, TO ANY INTELLECTUAL PROPERTY RIGHTS IS GRANTED BY
THIS DOCUMENT. INTEL ASSUMES NO LIABILITY WHATSOEVER AND INTEL DISCLAIMS ANY EXPRESS OR IMPLIED WARRANTY, RELATING TO THIS INFORMATION INCLUDING LIABILITY OR
WARRANTIES RELATING TO FITNESS FOR A PARTICULAR PURPOSE, MERCHANTABILITY, OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT.

Software and workloads used in performance tests may have been optimized for performance only on Intel microprocessors. Performance tests, such as SYSmark and MobileMark, are measured using specific
computer systems, components, software, operations and functions. Any change to any of those factors may cause the results to vary. You should consult other information and performance tests to assist you
in fully evaluating your contemplated purchases, including the performance of that product when combined with other products.

Optimization Notice

Intel's compilers may or may not optimize to the same degree for non-Intel microprocessors for optimizations that
are not unique to Intel microprocessors. These optimizations include SSE2, SSE3, and SSSE3 instruction sets and
other optimizations. Intel does not guarantee the availability, functionality, or effectiveness of any optimization on
microprocessors not manufactured by Intel. Microprocessor-dependent optimizations in this product are intended
for use with Intel microprocessors. Certain optimizations not specific to Intel microarchitecture are reserved for Intel
microprocessors. Please refer to the applicable product User and Reference Guides for more information regarding

the specific instruction sets covered by this notice.
Notice revision #20110804

Try Intel® Compilers

Available in these software tools:
Intel® Parallel Studio XE 2015 Composer, Professional, and Cluster Editions >

For more information regarding performance and optimization choices in Intel® software products,

visit software.intel.com/en-us/articles/optimization-notice. S'gn up for future issues = Share with a friend

http://software.intel.com/en-us/articles/optimization-notice
https://swdevtoolsmag.makebettercode.com/?utm_source=Parallel%20Universe%20Magazine%20Issue%2019&utm_content=PUM_Footer_na&utm_campaign=Intel%20DPD%20Campaign
http://intel.ly/Wh3TS3
https://software.intel.com/en-us/compiler_15.0_ug_c
https://software.intel.com/en-us/compiler_15.0_ug_c
https://software.intel.com/en-us/compiler_15.0_ug_f
https://makebettercode.com/parallelstudioxe2015

< The Parallel Universe 16

How to Design for Scalable
Performance—from Multicore
to Many-core

By Ekaterina Antakova, Software Engineer, Developer Products Division, Intel

Have you ever threaded an application but seen little performance gain? Have you hit a
“scalability ceiling” where performance gains level off as you add more cores? Implementing

a parallel algorithm can be a lot of effort. Wouldn't it be great to explore a couple of different
implementation schemes and see which is best, before investing in the heavy lifting of full
implementation? This is the problem that Intel® Advisor XE 2015 is designed to solve. It creates
a framework for software architects to model their design and predict the performance scaling
and synchronization issues. Here, we will see how Intel Advisor XE 2015 extends this modeling
to support Intel® Xeon Phi™ coprocessors.

Part of the Intel® Parallel Studio XE 2015 family, Intel Advisor XE 2015 helps to assess the
opportunities for parallelism in serial code, pinpoint the parts that are ready to benefit from
using Intel Xeon Phi coprocessors, and identify the key limiters when parts are not ready to
scale. Intel Advisor XE is available at http://intel.ly/advisor-xe.

For more information regarding performance and optimization choices in Intel® software products,

visit software.intel.com/en-us/articles/optimization-notice. S'gn up for future issues = Share with a friend

http://software.intel.com/en-us/articles/optimization-notice
http://intel.ly/Wh3TS3
http://intel.ly/RBA5rF
http://intel.ly/advisor-xe
https://swdevtoolsmag.makebettercode.com/?utm_source=Parallel%20Universe%20Magazine%20Issue%2019&utm_content=PUM_Footer_na&utm_campaign=Intel%20DPD%20Campaign

< The Parallel Universe 17

To enable moving to new CPUs and coprocessors effectively and to ease programmer
efforts, Intel provides tools to help identify the best spots to utilize parallel programming to
accelerate an application. For example, Intel Xeon Phi coprocessor capabilities can be used
effectively on highly parallel workloads. In order to achieve this goal, the programmer has to
learn what “highly parallel” actually means in terms of their application. This is the problem
which the Intel Advisor XE helps attack with the exciting new features now available.

These features help the programmer to automatically compare Intel Xeon Phi coprocessor
performance limits with Intel® Xeon® processor peak performance for a given workload to
make informed decisions on which parts of code are ready for porting to the coprocessor.
Another new capability is the ability to predict parallel scalability for bigger datasets to help
understand how to increase parallel efficiency on modern multicore and many-core hardware.

These modeling capabilities aim to answer three main questions about the
analyzed application:

1. Is the Intel Xeon Phi coprocessor the right fit for this workload?
Intel Advisor suitability analysis automatically predicts if Intel Xeon Phi coprocessor performance
levels can exceed the Intel Xeon processor performance peaks for a given workload. It also helps
determine if the current application structure does not scale well on the coprocessor early in the
development cycle.

Figures 1 and 2 show the predicted performance gain of a potential parallel version of two test
loops executing different stages of an image processing algorithm. The green zone shows gain levels
which are considered ready for running this workload on the Intel Xeon Phi coprocessor. Examining
color-coded zones, it is easy to determine that the first loop shown in Figure 1 scales quite well and
looks like a good candidate for porting to the coprocessor. According to this prediction, it should
achieve appropriate speedups on 128 coprocessor threads and more, if ported to the coprocessor.
Another loop shown in Figure 2 can't be considered “highly parallel,” as its predicted maximum gain
becomes flat after 128 coprocessor threads. So this one does not seem to be a good candidate for
running on the coprocessor, unless the algorithm can be modified to be more highly parallel.

Scalability of Maximum Site Gain Scalability of Maximum Site Gain

This site is ready for
Intel Xeon Phi

This site is riot ready for
Int%l Xeon Phi

(]
This sits is not ready fo-
o Intel Xeon Phi

S LINLIEXR A

UIRC) IS LINLUIXE A

Uieo 3

(] . == — [8] = — [
o (] TN r~J wn

Coprocessor Threads Coprocessor Threads
For more information regarding performance and optimization choices in Intel® software products, S f f . Sh . h f . d
visit software.intel.com/en-us/articles/optimization-notice. Iign up for future issues are with a frien

http://software.intel.com/en-us/articles/optimization-notice
https://swdevtoolsmag.makebettercode.com/?utm_source=Parallel%20Universe%20Magazine%20Issue%2019&utm_content=PUM_Footer_na&utm_campaign=Intel%20DPD%20Campaign

< The Parallel Universe 18

Scalability of Maximum Site Gain

1024x+
c15 =]
512x+ &
256 4
128x+ Q
= Gdx
16x A O
3 ©) o
% -1 0 Q o)
i x| o | o
5 x4 g
1

L \ "
= 2 fm MJoun

15
PZ0T

Target CPU Count

17.45% Load Imbalance: 28.82s A
Min Task Tirme: < 0.00015
Max Task Time: 0.0004s

Region (Site) Overhead: < 0,0001s
Task Owverhead: 29.965
Lock Overhead: 0s

‘ 18.14% Runtime Overhead: 29.96s ~
I 0.00% Lock Contention: Os

Total Parallel Time: 165.19s v

2. What are the main factors limiting parallel performance and scalability in this application?
For efficient parallelization of serial code, it is essential to understand the main obstacles to desired
performance and scalability. A high-level breakdown of parallelism performance losses caused by
imbalance in parallel jobs, lock contention, or parallel runtime overheads is provided by Intel Advisor
suitability analysis.

Figure 3 shows a loop which has good potential. The three markers show the range of performance pos-
sible by changing lock overhead, task chunking, parallel framework, etc. The middle circle moves as the
user selects different runtime modeling options. All three markers can move when the user changes the
task modeling options. Maximum predicted performance (shown by the upper white rectangles) grows
well with the increasing number of CPUs in Figure 3. However, the current performance gain of this loop
(shown by the white circles) does not scale well after 64 CPUs according to the Intel Advisor prediction.
The reasons for this include too much overhead of parallel runtimes: ~30s in total compared with total
parallel execution time predicted for this code of ~165s and significant imbalance between parallel tasks
causing waits of around 29s. This is an indication of issues with parallel task granularity and breakdown
in this loop. Significant runtime overhead prediction shows that parallel tasks are too fine-grained for this
workload, and that creation of every task is done too often, causing too much overhead.

For more information regarding performance and optimization choices in Intel® software products,

visit software.intel.com/en-us/articles/optimization-notice. S'gn up for future issues = Share with a friend

http://software.intel.com/en-us/articles/optimization-notice
http://intel.ly/RBA5rF
https://swdevtoolsmag.makebettercode.com/?utm_source=Parallel%20Universe%20Magazine%20Issue%2019&utm_content=PUM_Footer_na&utm_campaign=Intel%20DPD%20Campaign

< The Parallel Universe 19

3. What happens to parallel scalability as the workload size scales up?
Suitability Iteration Space modeling aims to predict what happens when workload size increases.
It models more iterations in loops, longer execution of iterations, or both at the same time. Run
a smaller sample and analyze how the performance will change if dataset size and computation
amount increase. Determine a sufficient dataset size to get the most from modern, highly parallel
multicore CPUs and coprocessors.
Figure 4 shows a scalability prediction for a model of a future parallel loop on a smaller test workload
and the user interface for modeling bigger data size processing. The current prediction shows quite
limited scalability of this workload on 32 and more CPUs.

But will it scale better with bigger input data? Based on the nature of the analyzed loop and
the bigger data to be processed, let's make an assumption that the iteration number should
increase about 125 times, and the duration of each iteration should increase a bit less than
this, about 25 times more than the current duration.

Scalability of Maximum Site Gain Loop lterations (Tasks) Modeling
6 ¢ | Intel Xeon Phi benefit afteer) Avg. Number of Iterations Avg. Iteration (Task)
a0 . (Tasks): Duration:
o 7.99¢ +006 < 0,0001s
_ 16x 2 7 7 & ¢ 0.008x 0.008x
a e 1 | [0.040x 0.040x
= ¥
3, Int:2l Xe:on Phi 1 1x(7.99¢ +006) — 1 1x(< 0.0001s)
v
T Sx Sxc
E;J X 25x 25x
3 125 125x
1x
,V't‘p p [_'
Coprocessor Threads
4
Vol Sofare el comomudriclesptimationmotics oo " ! Soere podct Sign up for future issues = Share with a friend

http://software.intel.com/en-us/articles/optimization-notice
https://swdevtoolsmag.makebettercode.com/?utm_source=Parallel%20Universe%20Magazine%20Issue%2019&utm_content=PUM_Footer_na&utm_campaign=Intel%20DPD%20Campaign

< The Parallel Universe 20

_ Scalability of Maximum Site Gain Loop lterations (Tasks) Modeling
o This site is ready for © Avg. Number of Iterations Avg. Iteration (Task])

128x Intel xeon Phi - [Tasks): Duration:
6d 3 9,992 +008 0.0001s

B [0.008x [0,008
3 0.040x 0.040x
3 16x () 0.200x 0.200x
This sits is not ready for- 1x (7.99¢ +006) 1x (< 0.00015)
g & o Intel Xeon Phi Sx 5
e . 25x £ 25«
S 1125 125x

Apply

£ ==Y

aT
9
i1

') o
[.

95¢

Coprocessor Threads

Figure 5 shows the updated performance prediction for this loop model with the new data size
parameters. In this case, increasing input data—modeled by increased number of iterations
and longer iteration durations—leads to better scalability for this loop, making it an appropriate
candidate for executing on the Intel Xeon Phi coprocessor.

New modeling capabilities of the Intel Advisor tool are based on measuring CPU-bound work,
task granularity (chunking and scheduling), load balancing, lock contention, and overheads of
the selected parallel framework. To analyze predicted performance and gains for Intel Xeon
Phi coprocessor applicability evaluation, the Intel Advisor model includes CPU frequency
parameters, coprocessor-specific runtime overheads, and data transfer overhead for specified
data size when modeling offload execution.

Here is what a graphics processing company, an early Beta evaluator, said about the practical
benefit of the new workload scaling feature: “Intel Advisor XE 2015 Beta demonstrates a useful
ability to estimate dataset size that is essential for choosing policy when chunking big images
for multiple renders.”

By modeling the scalability of future parallel code on different numbers of CPUs and on the
Intel Xeon Phi coprocessor, Intel Advisor helps identify the most performance-profitable parts
of your application. Development efforts can then focus on these code locations. Experimenting
with bigger workloads is useful to understand the optimal workload sizes sufficient to saturate
many cores on a given target platform. This allows you to explore how an application workload
scales under different conditions and discover whether you can get more performance benefits
from running on a coprocessor.

For more information regarding performance and optimization choices in Intel® software products,

visit software.intel.com/en-us/articles/optimization-notice. S'gn up for future issues = Share with a friend

http://software.intel.com/en-us/articles/optimization-notice
https://swdevtoolsmag.makebettercode.com/?utm_source=Parallel%20Universe%20Magazine%20Issue%2019&utm_content=PUM_Footer_na&utm_campaign=Intel%20DPD%20Campaign

< The Parallel Universe 21

Intel Advisor XE Predicts Scalable Performance on Intel Xeon
Phi Coprocessors

Intel Advisor XE modeling is a tremendous tool for understanding algorithm scalability in your
applications, acquiring a realistic view of the scalability of your program as implemented, and
getting feedback on what the limiters are in your code. This is enormously useful. Unfortunately,
no tool is available to tell you if there is a radically different approach or algorithm to get the same
work done while scaling better. However, with Intel Advisor XE you can determine if you need or
want more scalability, and evaluate multiple approaches quickly and easily. This will let you find
the best methods available to scale, and identify which applications have enough scaling to use
highly parallel systems such as Intel Xeon Phi coprocessors.

Try Intel® Advisor XE

Available in these softwore tools:

For more information regardlng performance and opt|m|zat|on choices in Intel® software products,

visit software.intel rticles/ p n-notice. Slgn Up fOF future ISSUGS Share Wlth a frlend

http://software.intel.com/en-us/articles/optimization-notice
https://makebettercode.com/parallelstudioxe2015
https://makebettercode.com/parallelstudioxe2015
https://swdevtoolsmag.makebettercode.com/?utm_source=Parallel%20Universe%20Magazine%20Issue%2019&utm_content=PUM_Footer_na&utm_campaign=Intel%20DPD%20Campaign

< The Parallel Universe

BLOG HIGHLIGHTS

New book: Multithreading for Visual Effects

BY JAMES REINDERS »

Several authors from DreamWorks Animation,
Pixar, Side Effects, AMD, and Intel got together to
write a book based on the SIGGRAPH 2013 course,
Multithreading in Visual Effects. The material in the
book is greatly expanded and updated from the
course material and includes an additional chapter
on OpenSubdiv, authored by Manuel Kraemer

of Pixar. Ron Henderson received a Technical
Achievement Award earlier this year (Feb 2014)

for the development of the FLUX gas simulation

system (Chapter 5 n our ook, MULTITHREADING s VISUAL EFFECTS

Chapter and Author List Martin Watt # Erwin Coumans * George ElKoura * Ronald Henderson
> Multithreading Introduction and Overview Manuel Kragmer * Jeff Lait » James Reinders
James Reinders, Intel Corporation

> Houdini: Multithreading Existing Software

Jeff Lait, Side Effects Software, Inc. i : "'q !’wl' -
The Presto Execution System: Designing 88 O g ¥

for Multithreading
George ElKoura, Pixar Animation Studios

LIbEE: Parallel Evaluation of Character Rigs
Martin Watt, Dreamworks Animation

Fluids: Simulation on the CPU
Ron Henderson, Dreamlworks Animation

Bullet Physics: Simulation with OpenCL™
Erwin Coumans, Advanced Micro Devices, Inc.

OpenSubdiv; Interoperating GPU Compute
and Drawing
Manuel Kraemer, Pixar

For more information regarding performance and optimization choices in Intel® software products,

visit software.intel.com/en-us/articles/optimization-notice. S'gn up for future issues = Share with a friend

http://software.intel.com/en-us/articles/optimization-notice
https://software.intel.com/en-us/user/335550
https://software.intel.com/en-us/user/337194
https://software.intel.com/en-us/user/334353
https://software.intel.com/en-us/VFX
https://swdevtoolsmag.makebettercode.com/?utm_source=Parallel%20Universe%20Magazine%20Issue%2019&utm_content=PUM_Footer_na&utm_campaign=Intel%20DPD%20Campaign

< The Parallel Universe 23

Additional Intel® Advanced Vector
Extensions 512 (Intel® AVX-512)

By James Reinders, Director of Parallel Programming Evangelism, Intel

The Intel® Architecture Instruction Set Extensions Programming Reference includes the definition
of additional Intel® Advanced Vector Extensions 512 (Intel® AVX-512) instructions.

As | discussed in my first blog about Intel AVX-5712 last year, Intel AVX-512 will be first
implemented in the future Intel® Xeon Phi™ processor and coprocessor known by the codename

Knights Landing.

We had committed that Intel AVX-512 would also be supported by some future Intel® Xeon®
processors scheduled to be introduced after Knights Landing. These additional documented
instructions will now appear in such processors, along with most Intel AVX-512 instructions
published previously.

The new instructions enrich the operations available as part of Intel AVX-512. These are provided
in two groups. A group of byte and word (8- and 16-bit) operations known as Byte and Word
Instructions, indicated by the AVX512BW CPUID flag, enhance integer operations. It is notable
that these do make use of all 64 bits in the mask registers. A group of doubleword and quadword
(32- and 64-bit) operations known as Doubleword and Quadword Instructions, indicated by the
AVX512DQ CPUID flag, enhance integer and floating-point operations.

For more information regarding performance and optimization choices in Intel® software products,

visit software.intel.com/en-us/articles/optimization-notice. S'gn up for future issues = Share with a friend

http://software.intel.com/en-us/articles/optimization-notice
https://software.intel.com/en-us/blogs/2013/avx-512-instructions
http://newsroom.intel.com/community/intel_newsroom/blog/2014/06/23/intel-re-architects-the-fundamental-building-block-for-high-performance-computing
https://swdevtoolsmag.makebettercode.com/?utm_source=Parallel%20Universe%20Magazine%20Issue%2019&utm_content=PUM_Footer_na&utm_campaign=Intel%20DPD%20Campaign

< The Parallel Universe 24

An additional orthogonal capability known as Vector Length Extensions provide for most AVX-
572 instructions to operate on 128 or 256 bits, instead of only 512. Vector Length Extensions
can currently be applied to most Foundation Instructions and the Conflict Detection Instructions,
as well as the new Byte, Word, Doubleword, and Quadword instructions. The AVX-512 Vector
Length Extensions are indicated by the AVX512VL CPUID flag. The use of Vector Length
Extensions extends most AVX-512 operations to also operate on XMM (128-bit, SSE) registers
and YMM (256-bit, AVX) registers. The use of Vector Length Extensions allows the capabilities of
EVEX encodings, including the use of mask registers and access to registers 16..31, to be applied
to XMM and YMM registers, instead of only to ZMM registers.

Emulation for Testing, Prior to Product

In order to help with testing of support, the Intel® Software Development Emulator has been
extended to include these new Intel AVX-512 instructions and is available at: http://www.intel.

com/software/sde.

Intel AVX-512 Family of Instructions

Intel AVX-512 Foundation Instructions will be included in all implementations of Intel AVX-512.
While the Intel AVX-512 Conflict Detection Instructions are documented as optional extensions,
the value for compiler vectorization has proven strong enough that they will be included in Intel
Xeon processors that support Intel AVX-512. This makes Foundation Instructions and Conflict
Detection Instructions both part of all Intel AVX-512 support for both future Intel Xeon Phi
coprocessors and processors and future Intel Xeon processors.

Knights Landing will support Intel AVX-512 Exponential and Reciprocal Instructions and Intel
AVX-512 Prefetch Instructions, while the first Intel Xeon processors with Intel AVX-512 will
support Intel AVX-512 Doubleword and Quadword Instructions, Intel AVX-512 Byte and Word
Instructions, and Intel AVX-512 Vector Length Extensions. Future Intel Xeon Phi coprocessors
and processors (after Knights Landing) may offer additional Intel AVX-512 instructions,

but should maintain a level of support at least comparable to Knights Landing (Foundation
Instructions, Conflict Detection Instructions, Exponential and Reciprocal Instructions, and Prefetch
Instructions). Likewise, the level of Intel AVX-512 support in the Intel Xeon processor family
should include at least Foundation Instructions, Conflict Detection Instructions, Byte and Word
Instructions, Doubleword and Quadword Instructions, and Vector Length Extensions whenever
Intel AVX-512 instructions are supported. Assuming these baselines in each family simplifies
compiler designs and should be done.

For more information regarding performance and optimization choices in Intel® software products,

visit software.intel.com/en-us/articles/optimization-notice. Slgn up for future issues Share with a friend

http://software.intel.com/en-us/articles/optimization-notice
http://www.intel.com/software/sde
http://www.intel.com/software/sde
http://intel.ly/SXMKY3
https://swdevtoolsmag.makebettercode.com/?utm_source=Parallel%20Universe%20Magazine%20Issue%2019&utm_content=PUM_Footer_na&utm_campaign=Intel%20DPD%20Campaign

< The Parallel Universe 25

Intel AVX-512 Support

Release of detailed information on these additional Intel AVX-512 instructions helps enable
support for tools, applications, and operating systems by the time products appear. We are
working with open source projects, application providers, and tool vendors to help incorporate
support. The Intel® compilers, libraries, and analysis tools have strong support for Intel AVX-
512 today. Updates, planned for November 2014, will provide support for these additional
instructions as well.

Intel AVX-512 Documentation

The Intel AVX-512 instructions are documented in the Intel® Architecture Instruction Set
Extensions Programming Reference. Intel AVX-512 is detailed in Chapters 2—7.

For more complete information about compiler optimizations, see our Optimization Notice.

Try Intel® Compilers

Available in these software tools:
Intel® Parallel Studio XE 2015 Composer, Professional, and Cluster Editions >

For more information regarding performance and optimization choices in Intel® software products,

visit software.intel ticles/ p ion-notice. Slgn Up fOF future ISSUGS Share Wlth a frlend

http://software.intel.com/en-us/articles/optimization-notice
https://software.intel.com/en-us/articles/optimization-notice
https://makebettercode.com/parallelstudioxe2015
https://swdevtoolsmag.makebettercode.com/?utm_source=Parallel%20Universe%20Magazine%20Issue%2019&utm_content=PUM_Footer_na&utm_campaign=Intel%20DPD%20Campaign

< The Parallel Universe 26

T TTE————,—,—,

Digimarc Takes Embedded Digital
Watermarking to the Next Level

SDKs for Developers Worldwide Get an Upgrade with Intel® Software Tools

Overview

Digimarc's core technology is the robust embedding of digital information in all forms of media.
Its digital watermarking technology allows users to embed digital information into audio, images,
video, and printed materials in a way that is persistent, imperceptible, and easily detected by
computers and digital devices. Digimarc technology helps companies and inspectors who need
to verify that content is genuine and from an authorized source, as well as confirm that it has
not been altered or falsified. The presence and continuity of a digital watermark can quickly help
determine whether or not the content has been altered. In addition, digital watermarks add yet
another layer of security to encrypted content in order to protect assets and help identify the
source of leaks.

Digimarc's software development kits (SDK) and accompanying support allow partners and
developers worldwide to integrate its solutions into their product offerings. Digimarc wanted to
update its SDKs to accelerate performance and take advantage of the latest hardware capabilities.

For more information regarding performance and optimization choices in Intel® software products,

visit software.intel.com/en-us/articles/optimization-notice. S'gn up for future issues = Share with a friend

http://software.intel.com/en-us/articles/optimization-notice
https://swdevtoolsmag.makebettercode.com/?utm_source=Parallel%20Universe%20Magazine%20Issue%2019&utm_content=PUM_Footer_na&utm_campaign=Intel%20DPD%20Campaign

< The Parallel Universe 27

The Challenge

Digimarc wanted to utilize the full power of multicore processors to improve performance of
the math-intensive image processing library that is integral to its SDKs. The previous library
version targeted processors from early 2000 and was unable to take advantage of SIMD vector
instructions and multicore processing power.

Migration to multicore required a complete rewrite of the code. And the application needed to run
on multiple operating systems.

The Solution

Digimarc explored other solutions, but only the Intel® software tools gave it the ability

to vectorize application code with minimal effort—and without resorting to low-level
programming techniques. Without vectorization, it would not have been possible to fully
utilize processor resources.

The Digimarc application is well-suited for SIMD instructions, and having a single compiler that
worked on multiple platforms was highly beneficial. Says Digimarc Software Engineer Goran
Negovetic, “We realized that to achieve good parallelism we needed lock-free algorithm design,
which means that there is no data sharing between threads. Although it was a big effort, we
achieved almost perfect scalability and are well-positioned for modern and future processors,
and an increasing number of processor cores.”

Being able to develop a solution that could be ported across platforms was key. The tools
enabled Digimarc to focus code optimization on a single platform and then replicate results
on other OS platforms without any code changes. Digimarc's engineers developed and tuned
the code on Windows*, but also compiled and released on OS X*. They are in the process of
targeting an embedded Linux* platform using the same codebase.

“Intel® Threading Building Blocks (Intel® TBB)
provided an easy way to parallelize the code. We
relied heavily on Intel® VTune™ Amplifier to measure
performance, and we used Intel® Inspector to check
for threading errors.”

— Goran Negovetic, Software Engineer, Digimarc

For more information regarding performance and optimization choices in Intel® software products,

visit software.intel.com/en-us/articles/optimization-notice. S'gn up for future issues = Share with a friend

http://software.intel.com/en-us/articles/optimization-notice
http://intel.ly/SXMKY3
http://intel.ly/RBA5rF
https://swdevtoolsmag.makebettercode.com/?utm_source=Parallel%20Universe%20Magazine%20Issue%2019&utm_content=PUM_Footer_na&utm_campaign=Intel%20DPD%20Campaign

< The Parallel Universe 28

Intel software tools helped Digimarc meet its very aggressive performance target. The new
codebase uses more advanced algorithms and is fully parallelizable for maximum scalability. It
achieves great performance when run on multicore processors. However, the code also had to
perform with legacy code on a single core. To meet that goal, it exploited data parallelism by
using SIMD vector instructions.

Digimarc used the Intel toolset across its development process. Says Goran, “Intel® Threading
Building Blocks (Intel® TBB) provided an easy way to parallelize the code. We relied heavily on
Intel® VTune™ Amplifier to measure performance, and we used Intel® Inspector to check for
threading errors.”

Intel support was extremely valuable, from providing training on tools to helping with actual code
vectorization. Goran adds, “Intel helped with tools training and support, code optimization and
vectorization, support with new language features (C++ 11), and support with the OS X compiler.
It was a great resource to have throughout the project.”

Results

Intel software tools offered better performance and ease of use, less invasive pragmas, and
auto-vectorization with minimal code changes. They outperformed competitive toolsets, allowing
Digimarc to realize productivity gains and reduce overall development costs.

*We realized that to achieve good parallelism we
needed lock-free algorithm design, which means
that there is no data sharing between threads.
Although it was a big effort, we achieved almost
perfect scalability and are well-positioned for
modern and future processors, and an increasing
number of processor cores.”

— Goran Negovetic, Software Engineer, Digimarc

For more information regarding performance and optimization choices in Intel® software products,

visit software.intel.com/en-us/articles/optimization-notice. S'gn up for future issues = Share with a friend

http://software.intel.com/en-us/articles/optimization-notice
http://intel.ly/RBA5rF
http://intel.ly/TzUDVJ
http://intel.ly/SXMKY3
https://swdevtoolsmag.makebettercode.com/?utm_source=Parallel%20Universe%20Magazine%20Issue%2019&utm_content=PUM_Footer_na&utm_campaign=Intel%20DPD%20Campaign

< The Parallel Universe 29

MODULE INTEL (US) COMPETITOR TOOLS (US)

1 98632 87138
2 8634 62013
3 338 8208
4 1350 1173
5 29810 32457
6 9641 13470
7 724 690
8 7010 5951
9 7997 22493
10 3955 13019
11 744 882
12 1547 2356
13 13826 22105

Total 184208 271955

Per module performance comparison

120,000

B ntel (US)

Competitor
17 2 3 4 5 6 7 8 9 10 11 12 13 Tools (US)

Intel® software tools contributed to significant performance increases for Digimarc, and
outperformed competitor products.

RESULTS GAINS

Performance Gains ~71.6x single-core speedup

Productivity Single compiler used for optimization across multiple platforms (Windows*, OS X*)

Auto-vectorization saved time, reducing time-consuming and tedious low-level programming techniques

Forward-Scaling and Cross- One codebase supported multiple processor targets
Platorm Development
Customer Satisfaction Met customer performance and timeline requirements and improved customer satisfaction
Development Costs Accelerated time to market and reduced development costs
Operating System Microsoft Windows Server* 2008 R2; Standard Service Pack 1 (6.1.7601); 171 HotFixes (latest: KB982018)
Processor Intel® Core™i7-3770 CPU @ 3.40GHz
Speed 3401 MHz
Memory 8134 MB
e, 2o e stveeoess - sign up for future issues | Share with a friend

http://software.intel.com/en-us/articles/optimization-notice
https://swdevtoolsmag.makebettercode.com/?utm_source=Parallel%20Universe%20Magazine%20Issue%2019&utm_content=PUM_Footer_na&utm_campaign=Intel%20DPD%20Campaign

< The Parallel Universe 30

Conclusion

Digimarc's focus on innovation in a complex industry and breadth of customer segments means
taking advantage of the latest hardware capabilities, and developing for cross-platform usage
models are strategic, as well as engineering priorities. Intel software tools allowed Digimarc to
upgrade its SDKs to meet aggressive performance and time-to-market goals, while continuing to
make its mark in digital watermark innovation.

About Digimarc

Based in Beaverton, Oregon, Digimarc enables businesses and governments worldwide to

enrich everyday living with the means to identify all forms of content, including audio, video, and
imagery. We develop solutions, license intellectual property, and provide development services
to business partners across a wide range of industries. Digimarc industries include packaging and
retail, audio, magazines, books, newspapers, direct mail, and finance. Company products include
Digimarc Discover*, Digimarc Guardian*, and SDKs.

Learn more: www.digimarc.com

About Intel® Software Development Tools

Intel has been providing standards-driven tools for developers in the high performance
computing industry for more than 25 years. Its industry-leading tools include Fortran, C, and C++
Compilers, as well as performance profiling and analysis tools such as Intel® VTune™ Amplifier
XE, Intel® Inspector XE, and Intel® Trace Analyzer and Collector. Performance libraries and
programming models such as Intel® MPI library, Intel® Math Kernel Library, Intel® Cilk™ Plus, and
Intel® Threading Building Blocks provide developers the tools needed to build applications for
today and scale forward to tomorrow.

Learn more: http://intel.ly/perf-tools

Learn more about Intel® software development tools at http://intel.ly/perf-tools.

Try Intel” Software

Development Tools >

For more information regarding performance and optimization choices in Intel® software products,

visit software.intel.com/en-us/articles/optimization-notice. S'gn up for future issues = Share with a friend

http://software.intel.com/en-us/articles/optimization-notice
http://www.digimarc.com
http://intel.ly/TzUDVJ
http://intel.ly/TzUDVJ
http://intel.ly/PsntXv
http://intel.ly/ShS8Ut
http://intel.ly/perf-tools
http://intel.ly/perf-tools
https://makebettercode.com/parallelstudioxe2015
https://makebettercode.com/parallelstudioxe2015
https://swdevtoolsmag.makebettercode.com/?utm_source=Parallel%20Universe%20Magazine%20Issue%2019&utm_content=PUM_Footer_na&utm_campaign=Intel%20DPD%20Campaign

< The Parallel Universe

s

Best and practical methods to use parallelism for performance

High Performance Parallelism Pearls

The experience of 69 experts, distilled into a 28-chapter 'cookbook’

Running code on the massive parallelism of the Intel® Xeon
High Performance Phi™ family of co-processors is easy, so you can quickly focus
Parallgllsm Pe_arls on optimization and achieving high performance. Fine-tuning
for parallelism takes your applications from correct to correct
and efficient.

The latest book compiled by parallel programming evangelists
and expert Intel engineers James Reinders and Jim Jeffers
provides a wealth of actual examples from contributors who

have found inventive ways to get the most from Intel® multicore
and many-core processors.

James Reinders,

For more information regarding performance and optimization choices in Intel® software products,

visit software.intel.com/en-us/articles/optimization-notice. S'gn up for future issues = Share with a friend

http://software.intel.com/en-us/articles/optimization-notice
https://swdevtoolsmag.makebettercode.com/?utm_source=Parallel%20Universe%20Magazine%20Issue%2019&utm_content=PUM_Footer_na&utm_campaign=Intel%20DPD%20Campaign

< The Parallel Universe 32

What's Inside

High Performance Parallelism Pearls shows you:

> The most effective ways to tap the computational potential of systems with Intel Xeon Phi coprocessors
and Intel® Xeon™ processors or other multicore processors

> Examples of successful programming efforts drawn from across industries and domains such as
chemistry, engineering, and environmental science

> Dozens of success stories that demonstrate not just the features of these powerful systems but also
how to take best advantage of parallelism across these heterogeneous systems

In each chapter, you'll find detailed technical information you can use, including:
> Proven results from 69 technical experts across multiple vertical domains
> Practical techniques and explanations for optimizations that help processors and coprocessors

> Actual source code, with highlights published in the book and complete source code available
for download

Get Your Copy Today

High Performance Parallelism Pearls: Multicore and Many-core Programming Approaches
(ISBN 978-0128021187) is available from the Elsevier Store and Amazon. Published by
Morgan Kaufmann

Find out more, read reviews, and read the unabridged first chapter - lotsofcores.com

“The newest book by James Reinders and Jim
Jeffers, High Performance Parallelism Pearls, distills
the experience of 69 HPC experts into 28 chapters
designed to teach the world about the performance
capabilities of the massively parallel Intel® Xeon Phi™
family of products.”

—Rob Farber, Teaching the World About Intel Xeon Phi, TechEnablement,
September 30,2014

For more information regarding performance and optimization choices in Intel® software products,

visit software.intel.com/en-us/articles/optimization-notice. S'gn up for future issues = Share with a friend

http://software.intel.com/en-us/articles/optimization-notice
http://store.elsevier.com
http://www.amazon.com
http://lotsofcores.com
https://swdevtoolsmag.makebettercode.com/?utm_source=Parallel%20Universe%20Magazine%20Issue%2019&utm_content=PUM_Footer_na&utm_campaign=Intel%20DPD%20Campaign

< The Parallel Universe

BLOG HIGHLIGHTS

33

Intel® Memory Protection Extensions (Intel® MPX) support in

the GNU Toolchain

BY IGOR ZAMYATIN »

The invalid memory access problem is commonly
found in many C/C++ programs and leads to
time-consuming debugging, program instability,
and vulnerability. Many attacks exploit software
bugs related to inappropriate memory accesses
caused by buffer overflow (or buffer overruns).
The existing set of techniques and tools to

find such memory bugs in the programs and
defend them from the attacks are software-only
solutions, which result in poor performance of the
protected code.

Intel is introducing a new ISA extension called
Intel® Memory Protection Extensions (Intel®

MPX) to be used for memory protection in
applications with low performance overhead. To
take advantage of this new extension, changes are
required in the OS kernel, binutils, compiler, and
system libraries support.

For more information regarding performance and optimization choices in Intel® software products,
visit software.intel.com/en-us/articles/optimization-notice.

Intel MPX introduces new registers, called
“bound registers,” to hold bounds for a pointer
and instructions to manipulate those registers
(for details see the Programming Reference).
Therefore, the first step is to implement
support for new hardware features in binutils
and the GCC.

This paper describes changes in GNU Binutils,
GCC, and Glibc to support Intel MPX.

Sign up for future issues = Share with a friend

http://software.intel.com/en-us/articles/optimization-notice
https://software.intel.com/en-us/user/196116
https://software.intel.com/en-us/user/337194
http://intel.ly/RzDt8p
https://software.intel.com/en-us/user/334353
https://software.intel.com/en-us/blogs/2013/07/22/intel-memory-protection-extensions-intel-mpx-support-in-the-gnu-toolchain
https://swdevtoolsmag.makebettercode.com/?utm_source=Parallel%20Universe%20Magazine%20Issue%2019&utm_content=PUM_Footer_na&utm_campaign=Intel%20DPD%20Campaign
https://software.intel.com/en-us/user/196116

tel.

Software

The Parallel

Universe

© 2014, Intel Corporation. All rights reserved. Intel, the Intel logo, Intel Core, Cilk, VTune, Xeon,
and Xeon Phi are trademarks of Intel Corporation in the U.S. and/or other countries.
*Other names and brands may be claimed as the property of others.

Open CL and the OpenCL logo are trademarks of Apple, Inc. used by permission by Kronos.

